Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations
نویسندگان
چکیده
[1] Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20–40 W m . Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from 5°C to 40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.
منابع مشابه
Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study
A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been est...
متن کاملEvaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations
Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as ...
متن کاملThe Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model
The major evolution of the National Center for Atmospheric Research Community Atmosphere Model (CAM) is used to diagnose climate feedbacks, understand how climate feedbacks change with different physical parameterizations, and identify the processes and regions that determine climate sensitivity. In the evolution of CAM from version 4 to version 5, the water vapor, temperature, surface albedo, ...
متن کاملA Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5
In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasiMonte Carlo (QMC) sampling approach to effectively explore the high-dimensional parameter space. The output response vari...
متن کاملSensitivity study of cloud-resolving convective simulations with WRF using the PLIN and WSM6 microphysical parameterizations
At NCAR, real time forecasting experiments with a 4-km grid mesh over the central US employed the WRF-Single-Moment 6class (WSM6) Microphysics scheme that replaced the Purdue Lin (PLIN) scheme in early 2005. Both schemes have the same number of prognostic water substance including graupel. Although some preliminary reports identified the overall superiority of the WSM6 to the PLIN scheme in res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011